DURIAN SEED EXTRACT AMELIORATES LIPID PROFILES IN METABOLIC SYNDROME MODEL RATS
Main Article Content
Abstract
Sindrom metabolik merupakan sekumpulan kelainan metabolik yang kompleks dan berkaitan dengan terjadinya dislipidemia yang ditandai dengan adanya perubahan profil lipid yang abnormal meliputi peningkatan kadar trigliserida, kadar low-density lipoprotein (LDL) dan rendahnya kadar high-density lipoprotein (HDL). Ekstrak biji durian mengandung senyawa flavonoid, alkaloid, fenolik dan triterpenoid yang berpotensi dalam memperbaiki profil lipid. Penelitian ini bertujuan untuk mengamati ekstrak biji durian dalam perbaikan profil lipid. Penelitian ini merupakan eksperimental laboratorium desain pretest-posttest dengan kelompok kontrol. Sebanyak 30 ekor tikus jantan galur Wistar usia 8 minggu, berat 150-200 g dibagi menjadi 6 kelompok. Kelompok kontrol normal (NG) yaitu tikus yang diberi pakan standar, sedangkan 5 kelompok ainnya dibuat model sindrom metabolik dengan diberi diet High Fat High Fructose (HFHFr) 14 hari dan induksi Streptozotocin (STZ)-Nicotinamide (NA), meliputi kelompok kontrol negatif (NC), yang diberi aquades, dan kelompok kontrol positif (PC), yang diberi simvastatin 0,9 mg/kgBB. Kelompok perlakuan yaitu kelompok perlakuan 1 (TG1), kelompok perlakuan 2 (TG2), dan kelompo perlakuan 3 (TG3), diberikan ekstrak biji durian dosis 100, 200, dan 300 mg/kgBB selama 21 hari. Data dianalisis menggunakan Paired T-test dan One-way ANOVA, dengan signifikansi p<0,05. Hasil menunjukkan setelah 21 hari pemberian ekstrak biji durian terjadi penurunan kadar trigliserida dan LDL serta peningkatan kadar HDL yang signifikan (p<0,05), yang mana perubahan terbesar terjadi pada kelompok dosis 300 mg/kgBB dengan trigliserida sebesar -38,24 ± 6,45 mg/dl, LDL -45,67 ± 2,71 mg/dl dan HDL 54,22 ± 2,72 mg/dl. Pemberian ekstrak biji durian dapat memperbaiki profil lipid pada sindrom metabolik dengan dosis terbaik yaitu 300 mg/kgBB.
Article Details
References
O. Singh, M. Gupta, and V. Khajuria, “Lipid profile and its relationship with blood glucose levels in metabolic syndrome,” Natl. J. Physiol. Pharm. Pharmacol., vol. 5, no. 2, pp. 134–137, 2015, doi: 10.5455/njppp.2015.5.051120141.
L. Zhu, C. Spence, W. J. Yang, and G. X. Ma, “The idf definition is better suited for screening metabolic syndrome and estimating risks of diabetes in asian american adults: Evidence from nhanes 2011–2016,” J. Clin. Med., vol. 9, no. 12, pp. 1–13, 2020, doi: 10.3390/jcm9123871.
S. M. Mohamed, M. A. Shalaby, R. A. El-Shiekh, H. A. El-Banna, S. R. Emam, and A. F. Bakr, “Metabolic syndrome: risk factors, diagnosis, pathogenesis, and management with natural approaches,” Food Chem. Adv., vol. 3, no. May, 2023, doi: 10.1016/j.focha.2023.100335.
J. J. Noubiap et al., “Geographic distribution of metabolic syndrome and its components in the general adult population: A meta-analysis of global data from 28 million individuals,” Diabetes Res. Clin. Pract., vol. 188, pp. 1–9, 2022, doi: 10.1016/j.diabres.2022.109924.
E. H. Herningtyas and T. S. Ng, “Prevalence and distribution of metabolic syndrome and its components among provinces and ethnic groups in Indonesia,” BMC Public Health, vol. 19, no. 1, pp. 1–12, 2019, doi: 10.1186/s12889-019-6711-7.
Y. Tong, S. Xu, L. Huang, and C. Chen, “Obesity and insulin resistance: Pathophysiology and treatment,” Drug Discov. Today, vol. 27, no. 3, pp. 822–830, 2022, doi: 10.1016/j.drudis.2021.11.001.
Y. Rochlani, N. V. Pothineni, S. Kovelamudi, and J. L. Mehta, “Metabolic syndrome: pathophysiology, management, and modulation by natural compounds,” Ther. Adv. Cardiovasc. Dis., vol. 11, no. 8, pp. 215–225, 2017, doi: 10.1177/1753944717711379.
P. Bjornstad and R. H. Eckel, “Pathogenesis of Lipid Disorders in Insulin resistamce: A Brief Review,” Curr Diab Rep., vol. 18, no. 12, pp. 1–14, 2018, doi: 10.1007/s11892-018-1101-6.
S. Srikanth and P. Deedwania, “Management of Dyslipidemia in Patients with Hypertension, Diabetes, and Metabolic Syndrome,” Curr. Hypertens. Rep., vol. 18, no. 10, 2016, doi: 10.1007/s11906-016-0683-0.
A. Chait and L. J. den Hartigh, “Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease,” Front. Cardiovasc. Med., vol. 7, no. February 2020, pp. 1–41, 2020, doi: 10.3389/fcvm.2020.00022.
K. Haile, A. Haile, and A. Timerga, “Predictors of lipid profile abnormalities among patients with metabolic syndrome in southwest ethiopia: A cross-sectional study,” Vasc. Health Risk Manag., vol. 17, no. August, pp. 461–469, 2021, doi: 10.2147/VHRM.S319161.
S. Ziolkowska, A. Binienda, M. Jablkowski, J. Szemraj, and P. Czarny, “The interplay between insulin resistance, inflammation, oxidative stress, base excision repair and metabolic syndrome in nonalcoholic fatty liver disease,” Int. J. Mol. Sci., vol. 22, no. 20, pp. 2–27, 2021, doi: 10.3390/ijms222011128.
G. Fahed et al., “Metabolic Syndrome: Updates on Pathophysiology and Management in 2021,” Int. J. Mol. Sci., vol. 23, no. 2, pp. 1–38, 2022, doi: 10.3390/ijms23020786.
S. Devi, “Dyslipidemia in Metabolic Syndrome: an Overview of Lipoprotein- Related Disorders,” Int. J. Cardiol. Lipidol. Res., vol. 4, no. 1, pp. 6–15, 2017, doi: 10.15379/2410-2822.2017.04.01.02.
T. C. Azqinar, D. I. Anggraini, and S. Kania, “Penatalaksanaan Holistik Pada Wanita Usia 60 Tahun Dengan Dislipidemia Melalui Pendekatan Kedokteran Keluarga,” J. Penelit. Perawat Prof., vol. 4, no. 4, pp. 1093–1100, 2022, [Online]. Available: http://jurnal.globalhealthsciencegroup.com/index.php/JPPP/article/download/83/65
R. J. Perry et al., “Dehydration and insulinopenia are necessary and sufficient for euglycemic ketoacidosis in SGLT2 inhibitor-treated rats,” Nat. Commun., vol. 10, no. 1, 2019, doi: 10.1038/s41467-019-08466-w.
F. Amir and C. Saleh, “Uji Aktivitas Antioksidan Ekstrak Etanol Biji Buah Durian (Durio zibethinus Murr.) dengan Menggunakan Metode DPPH,” J. Kim. Mulawarman, vol. 11, no. 2, pp. 86–87, 2014.
H. M. Putra, Patonah, and I. K. Sukmawati, “Aktivitas Antihiperlipidemia Ekstrak Etanol Daun Katuk (Sauropus androgynus (L.) Merr.) pada Model Hewan yang Diinduksi Fruktosa,” J. Pharmacopolium, vol. 4, no. 3, pp. 130–136, 2021.
J. Heeren and L. Scheja, “Metabolic-associated fatty liver disease and lipoprotein metabolism,” Mol. Metab., vol. 50, no. April, p. 101238, 2021, doi: 10.1016/j.molmet.2021.101238.
F. Pebriani and T. Milanda, “Review artikel : Aktivitas Farmakologi Angkak (Beras Merah Fermentasi Kapang Monascus purpureus),” Farmaka, vol. 20, no. 2, pp. 42–55, 2022.
I. Nugerahani, A. M. Suteja, R. M. Widharna, and Y. Marsono, “In vivo evaluation of monascus-fermented durian seed,” Food Res., vol. 1, no. 3, pp. 83–88, 2017.
N. Charoenphun and W. K. Klangbud, “Antioxidant and Anti-inflammatory Activities of Durian (Durio zibethinus Murr.) Pulp, Seed and Peel Flour,” PeerJ, vol. 10, pp. 1–15, 2022, doi: 10.7717/peerj.12933.
M. N. Mufidah, “Pengaruh Pemberian Ekstrak Etanol Biji Durian sebagai Repressor Radikal Bebas terhadap Kadar Glukosa Darah pada Tikus Wistra Model Diabetes Mellitus,” Universtias Muhammdiyah Yogyakarta, 2020.
A. R. P. A. Mujayanah, Y. Sari, and S. Listyawati, “The Effect of Bamboo Tali Leaf Tea on Leptin Levels in Rats Metabolic Syndrome,” in Proceedings of the International Conference on Nursing and Health Sciences, 2023, vol. 4, no. 1, pp. 83–90. doi: 10.37287/picnhs.v4i1.1686.
S. S. Zarghani, H. Soraya, L. Zarei, and M. Alizadeh, “Comparison of three different diet-induced non alcoholic fatty liver disease protocols in rats: A pilot study,” Pharm. Sci., vol. 22, no. 1, pp. 9–15, 2016, doi: 10.15171/PS.2016.03.
R. K. Suman, I. Ray Mohanty, M. K. Borde, U. Maheshwari, and Y. A. Deshmukh, “Development of an Experimental Model of Diabetes Co-Existing with Metabolic Syndrome in Rats,” Adv. Pharmacol. Sci., vol. 2016, pp. 1–11, 2016, doi: 10.1155/2016/9463476.
R. A. Nugroho, Mengenal Mencit sebagai Hewan Laboratorium. Samarinda: Mulawarman University Press, 2018.
M. Audina, T. C. Maigoda, and T. W. W, “Status Gizi, Aktivitas Fisik dan Asupan Serat Berhubungan dengan Kadar Gula Darah Puasa Penderita DM Tipe 2,” J. Ilmu dan Teknol. Kesehat., vol. 6, no. 1, pp. 59–71, 2018, doi: 10.32668/jitek.v6i1.109.
M. C. D. Vedova et al., “A mouse model of diet-induced obesity resembling most features of human metabolic syndrome,” Nutr. Metab. Insights, vol. 9, pp. 93–102, 2016, doi: 10.4137/NMI.S32907.
F. Husna, F. D. Suyatna, W. Arozal, and E. H. Purwaningsih, “Model Hewan Coba pada Penelitian Diabetes,” Pharm. Sci. Res., vol. 6, no. 3, pp. 131–141, 2019, doi: 10.7454/psr.v6i3.4531.
G. Rinaldy, “Penggunaan Ekstrak Kasar Polisakarida Larut Air dari Biji Buah Durian (Durio zibethinus Murr) pada Tikus Hiperlipidemia untuk Memperbaiki Profil Lipid,” Universitas Jember, 2015.
L. Mungmai, C. Kanokwattananon, S. Thakang, A. Nakkrathok, P. Srisuksomwong, and P. Tanamatayarat, “Physicochemical Properties, Antioxidant and Anti-Tyrosinase Activities of Durio zibethinus Murray and Value Added for Cosmetic Product Formulation,” Cosmetics, vol. 10, no. 3, 2023, doi: 10.3390/cosmetics10030087.
S. Aisyah, D. R. Harioputro, and I. Nurwati, “The Potential of Durian Seed ( Durio zibethinus Murr .) as Natural Resources with Antioxidant Activity and Total Flavonoid Content,” in The 1st International Conference of Health Institut Kesehatan Mitra Bunda 2024, 2024, vol. 2024, pp. 14–19.
L. Toma, G. M. Sanda, L. S. Niculescu, M. Deleanu, A. V. Sima, and C. S. Stancu, “Phenolic compounds exerting lipid-regulatory, anti-inflammatory and epigenetic effects as complementary treatments in cardiovascular diseases,” Biomolecules, vol. 10, no. 4, 2020, doi: 10.3390/biom10040641.
T. Tien, N. R. Ardiansyah, C. W. Sabandar, L. Kardin, and P. Aritrina, “Inhibition of HMG-CoA Reductase Activity by Kersen Leaves (Muntingia calabura L.) to Prevent Hypercholesterolemia,” J. Farm. Galen. (Galenika J. Pharmacy), vol. 9, no. 1, pp. 102–113, 2023, doi: 10.22487/j24428744.2023.v9.i1.16086.
I. R. Sutejo, I. Rasyada, and A. Yuniar, “Aktivitas Antihiperlipidemi dan Ateroprotektif Ekstrak Etanol Daun Kepuh (Sterculia foetida) pada Tikus yang Diinduksi Diet Tinggi Lemak Antihiperlipidemi and Atheroprotective activity of Kepuh (Sterculia foetida) Leaves Ethanolic Extract on High-Fat-Diet,” J. Agromedicine Med. Sci., vol. 3, no. 1, pp. 44–49, 2017.
C. L. Millar, Q. Duclos, and C. N. Blesso, “Effects of dietary flavonoids on reverse cholesterol transport, HDL metabolism, and HDL function,” Adv. Nutr., vol. 8, no. 2, pp. 226–239, 2017, doi: 10.3945/an.116.014050.
R. Hardiansyah and M. Lamid, “An Efficacy of Seligi Leaf Flour Fermentation on Cholesterol Levels, Low Density Lipoprotein, and High Density Lipoprotein in Catfish,” J. Med. Vet., vol. 5, no. 1, pp. 41–47, 2022, doi: 10.20473/jmv.vol5.iss1.2022.41-47.
L. Rajan, D. Palaniswamy, and S. K. Mohankumar, “Targeting obesity with plant-derived pancreatic lipase inhibitors: A comprehensive review,” Pharmacol. Res., vol. 155, no. December 2019, p. 104681, 2020, doi: 10.1016/j.phrs.2020.104681.
G. Mannino et al., “Bioactive triterpenes of protium heptaphyllum gum resin extract display cholesterol-lowering potential,” Int. J. Mol. Sci., vol. 22, no. 5, pp. 1–22, 2021, doi: 10.3390/ijms22052664.