PERANCANGAN PROTOTYPE INTERNET OF THINGS (IOT) SISTEM MONITORING INDOOR AIR QUALITY

Main Article Content

Nia Yuniarti Hasan
Teguh Budi Prijanto
Kahar Kahar

Abstract

The health of household occupants can be significantly influenced by indoor air quality, a crucial factor. Currently, real-time measurement of indoor air quality is not feasible. Consequently, there is a need to create sensor technology capable of reading air quality concentration data and transmitting information via internet connectivity. This sensor technology is part of the broader Internet of Things (IoT) ecosystem. This study aimed to create an IoT prototype for real-time measurement of SO2, NO2, PM10, and PM2.5 gas concentrations in residential settings. The research employs a Research and Development (R&D) methodology, with real-time sample data collection and descriptive analysis. The prototype's measurements revealed concentrations (g/m3) of SO2 (0.0100-0.1011), NO2 (0.0005-0.9352), PM10 (51-128), and PM2.5 (43-121). Over 24 hour period, average measurements indicated that SO2 concentration met the standard (0.1 g/m3), while NO2 exceeded the limit (0.04 g/m3), as did PM10 (70 g/m3) and PM2.5 (35 g/m3). This prototype can measure indoor air quality parameters such as SO2, NO2, PM10, and PM2.5, with results viewable on both an LCD and the Blynk Android application.

Article Details

How to Cite
Hasan, N. Y., Prijanto, T. B., & Kahar, K. (2024). PERANCANGAN PROTOTYPE INTERNET OF THINGS (IOT) SISTEM MONITORING INDOOR AIR QUALITY. Media Penelitian Dan Pengembangan Kesehatan, 34(3), 767-778. https://doi.org/10.34011/jmp2k.v34i3.2473


Section
Articles

References

I. Q. A’yun and R. Umaroh, “Polusi Udara dalam Ruangan dan Kondisi Kesehatan: Analisis Rumah Tangga Indonesia,” J. Ekon. dan Pembang. Indones., vol. 23, no. 1, pp. 16–26, 2023, doi: 10.21002/jepi.2022.02.

Kementerian Kesehatan RI, “Peraturan Menteri Kesehatan RI No. 1077 Tahun 2011 tentang Pedoman Penyehatan Udara Dalam Ruang Rumah.” Kementerian Kesehatan Republik Indonesia, Jakarta, 2011.

A. P. Yudison and Driejana, “Development of indoor air pollution concentration prediction by geospatial analysis,” J. Eng. Technol. Sci., vol. 47, no. 3, pp. 306–319, 2015, doi: 10.5614/j.eng.technol.sci.2015.47.3.6.

F. M. Sidjabat, D. Driejana, and A. Sjafruddin, “Baseline Beban Emisi Sektor Transportasi Di Koridor Pasteur-Cileunyi Dan Ujungberung-Gedebage, Bandung, Jawa Barat, Indonesia,” J. Teh. Lingkung., vol. 22, no. 1, pp. 52–62, 2016, doi: 10.5614/j.tl.2016.22.1.6.

A. Pratama and A. Sofyan, “Analisis Dispersi Pencemar Udara PM10 di kota Bandung Menggunakan Wrfchem Data Asimilasi,” J. Tek. Lingkung., vol. 26, no. 2, pp. 11–30, 2020.

R. K. Suman, I. Ray Mohanty, M. K. Borde, U. Maheshwari, and Y. A. Deshmukh, “Development of an Experimental Model of Diabetes Co-Existing with Metabolic Syndrome in Rats,” Adv. Pharmacol. Sci., vol. 2016, pp. 1–11, 2016, doi: 10.1155/2016/9463476.

World Health Organization (WHO), “Environmental Health Risk Assessment Guidelines,” WHO, 2012.

S. Agrawal and D. Vieira, “A Survey of Internet of Things,” Abakós, vol. 1, no. 2, pp. 78–95, 2013, doi: 10.36724/2664-066x-2020-6-2-25-32.

H. Budianto and B. Sumanto, “Perancangan Sistem Monitoring Kualitas Udara dalam Ruangan Berbasis Internet of Things,” J. List. Instrumentasi, dan Elektron. Terap., vol. 5, no. 1, pp. 9–17, 2024.

R. Muttaqin, W. Sakti, W. Prayitno, and N. Erna, “Rancang Bangun Sistem Pemantauan Kualitas Udara Berbasis Iot ( Internet Of Things ) dengan Sensor DHT11 dan Sensor MQ135,” J. Pengelolaan Lab. Pendidik., vol. 6, no. 2, pp. 102–115, 2024.

Sugiono, Metode Penelitian Kuantitatif Kualitatif dan R&D. Yogyakarta: Alfabetha, 2019.

T. N. Hakim and M. F. Susanto, “Sistem Monitoring Kualitas Udara Berbasis Internet of Things.,” in Prosiding The 11th Industrial Research Workshop and National Seminar, Bandung, 2020, pp. 496–502.

F. Rizki, “Alat Pendeteksi Polusi Udara Dari Gas Karbonmonoksida (CO) Pada Ruangan Berbasis Mikrokontroler AT89S51. Surabaya,” Universitas Pembangunan Nasional “Veteran” Jawa Timur, 2011. [Online]. Available: https://adoc.pub/laporan-tugas-akhir-alat-pendeteksi-polusi-udara-dari-gas-ka.html

F. Hasyim and I. Suharjo, “Sistem Notifikasi Monitoring Kualitas Udara dalam Ruangan Produksi Berasis Internet of Things ( IoT ) Meggunakan ESP8266,” J. Ilm. Komput. Graf., vol. 17, no. 1, pp. 149–158, 2024.

N. Y. Hasan, T. B. Prijanto, and S. Setyoko, “Analisis Perhitungan Carbon Footprint Dari Penggunaan Gas , Bensin , Dan Listrik Rumah Tangga,” J. Ris. Kesehat. Poltekkes Depkes Bandung, vol. 15, no. 1, pp. 172–178, 2023.

A. W. Burange and H. D. Misalkar, “Review of Internet of Things in development of smart cities with data management & privacy,” in 2015 International Conference on Advances in Computer Engineering and Applications, India: IEEE, 2015. doi: 10.1109/ICACEA.2015.7164693.

C. Wang et al., “Guest Editorial Special Issue on Internet of Things ( IoT ): Architecture , Protocols and Services,” EEE Sensors J., vol. 13, no. 10, pp. 3505–3510, 2013, doi: https://doi.org/10.1109/JSEN.2013.2274906.

A. D. Ramadhani, A. Nurcahya, N. Azizah, and N. Ningsih, “Klasifikasi dan Monitoring Kualitas Udara Dalam Ruangan menggunakan Thingspeak,” J. Tek. Elektro dan Komput. TRIAC, vol. 10, no. 1, pp. 1–5, 2023.