TRANSFORMASI GIZI BALITA STUNTING: PENGARUH BISKUIT TINGGI PROTEIN BERBASIS WHEY PROTEIN TERHADAP KADAR SCFA
Main Article Content
Abstract
Stunting, characterized by impaired growth and development in children under five, is a major health issue caused by chronic malnutrition and recurrent infections during the first 1000 days of life. Protein intake is crucial for the provision of essential amino acids necessary for optimal growth and immune function. This study aimed to analyze the effect of whey protein-based high-protein biscuits on short-chain fatty acids (SCFA) levels in stunted children. A quasi-experimental design with a pre-post test group was used. Thirty-six stunted children were divided into two groups: the intervention group received whey protein-based high-protein biscuits, while the control group received an equivalent protein source from eggs and tempeh. SCFA levels were measured before and after the intervention. Paired T-tests and Wilcoxon tests were used for statistical analysis. The study found that high-protein biscuits significantly increased SCFA levels (acetate, propionate, and butyrate) in the intervention group (p-value < 0.001). These findings suggest that high-protein biscuits can positively influence gut microbiota and overall health in stunted children. High-protein biscuits can effectively increase SCFA levels in stunted children, contributing to improved gut health. Future studies should explore the long-term effects and potential risks associated with this intervention
Article Details
References
N. H. F. Losong and M. Adriani, “Perbedaan Kadar Hemoglobin, Asupan Zat Besi, dan Zinc pada Balita Stunting dan Non Stunting,” Amerta Nutr., vol. 1, no. 2, p. 117, Oct. 2017, doi: 10.20473/amnt.v1i2.6233.
G. Apriluana and S. Fikawati, “Analisis Faktor-Faktor Risiko terhadap Kejadian Stunting pada Balita (0-59 Bulan) di Negara Berkembang dan Asia Tenggara,” Media Penelit. dan Pengemb. Kesehat., vol. 28, no. 4, pp. 247–256, Dec. 2018, doi: 10.22435/mpk.v28i4.472.
Kemenkes RI, Hasil Utama Riskesdas 2018. Jakarta: Kementerian Kesehatan RI, 2018.
Kemenkes RI, “Buku Saku Hasil Survey Status Gizi Indonesia (SSGI) Tahun 2022,” Kemenkes, pp. 1–7, 2022.
N. K. Aryastami and I. Tarigan, “Kajian Kebijakan dan Penanggulangan Masalah Gizi Stunting di Indonesia,” Bul. Penelit. Kesehat., vol. 45, no. 4, pp. 233–240, Dec. 2017, doi: http://dx.doi.org/10.22435/bpk.v45i4.7465.233-240.
Kemkes RI, “Hasil Studi Status Gizi Indonesia (SSGI) TIngkat Nasional, Provinsi, dan Kabupaten/Kota Tahun 2021.” Kementrian Kesehatan RI, pp. 6–133, 2021.
Sekretariat RI, Strategi Nasional Percepatan Pencegahan Anak Kerdil (Stunting) Periode 2018-2024. Jakarta: Kementerian Koordinator Bidang Pembangunan Manusia dan Kebudayaan, 2018.
A. V Kane, D. M. Dinh, and H. D. Ward, “Childhood malnutrition and the intestinal microbiome,” Pediatr. RESEACH, vol. 77, no. 1, pp. 256–262, 2015, doi: 10.1038/pr.2014.179.
I. S. Surono, D. Widiyanti, P. D. Kusumo, and K. V. Id, “Gut microbiota profile of Indonesian stunted children and children with normal nutritional status,” PLoS One, vol. 16, no. 1, pp. 1–18, 2021, doi: 10.1371/journal.pone.0245399.
C. D. Bourke, J. A. Berkley, and A. J. Prendergast, “Immune Dysfunction as a Cause and Consequence of Malnutrition,” Trends Immunol., vol. 37, no. 6, pp. 386–398, Jun. 2016, doi: 10.1016/j.it.2016.04.003.
A. M. Abd El-Maksoud, S. A. Khairy, H. M. Sharada, M. S. Abdalla, and N. F. Ahmed, “Evaluation of pro-inflammatory cytokines in nutritionally stunted Egyptian children,” Egypt. Pediatr. Assoc. Gaz., vol. 65, no. 3, pp. 80–84, 2017, doi: 10.1016/j.epag.2017.04.003.
K. G. Dewey and D. R. Mayers, “Early child growth: how do nutrition and infection interact?,” Matern. Child Nutr., vol. 7, no. s3, pp. 129–142, Oct. 2011, doi: 10.1111/j.1740-8709.2011.00357.x.
I. S. Surono et al., “Differences in immune status and fecal SCFA between Indonesian stunted children and children with normal nutritional status,” PLoS One, vol. 16, no. 7, pp. 1–14, 2021, doi: 10.1371/journal.pone.0254300.
K. A. Verbeke et al., “Towards microbial fermentation metabolites as markers for health benefits of prebiotics Nutrition Research Reviews Nutrition Research Reviews,” Nutr. Res. Rev., vol. 28, pp. 42–66, 2015, doi: 10.1017/S0954422415000037.
K. Korpela, “Diet, Microbiota, and Metabolic Health: Trade-Off Between Saccharolytic and Proteolytic Fermentation,” Annu. Rev. Food Sci. Technol., vol. 9, no. December 2017, pp. 65–84, 2018, doi: 10.1146/annurev-food-030117-012830.
I. Rowland et al., “Gut microbiota functions: metabolism of nutrients and other food components,” Eur. J. Nutr., vol. 57, no. 1, pp. 1–24, 2018, doi: 10.1007/s00394-017-1445-8.
V. De Preter, H. M. Hamer, K. Windey, and K. Verbeke, “The impact of pre- and/or probiotics on human colonic metabolism: Does it affect human health?,” Mol. Nutr. Food Res., vol. 55, no. 1, pp. 46–57, 2011, doi: 10.1002/mnfr.201000451.
Menteri Kesehatan RI, “Peraturan Menteri Kesehatan RI no. 2 tahun 2020 tentang Standar Antropometri Anak.” 2020.
D. J. Millward, “Nutrition, infection and stunting: the roles of def ciencies of individual nutrients and foods, and of in fl ammation, as determinants of reduced linear growth of children,” Nutr. Res. Rev., vol. 30, no. 1, pp. 1–23, 2017, doi: 10.1017/S0954422416000238.
I. Supariasa, Pendidikan dan Konsultasi Gizi. Jakarta: Buku Kedokteran EGC, 2016.
M. S. Dahlan, Besar Sampel dan Cara Pengambilan Sampel, 3rd ed. Salemba Medika, 2010.
R. Andoyo, M. N. Aini, D. W. Wira, G. Wilar, R. S. Darwis, and S. Huda, “Pre-Clinical Study of the High Protein Food Based on Denaturized Whey Protein,” Syst. Rev. Pharm., vol. 12, no. 1, pp. 759–770, 2021.
Bappeda, “Hasil Analisis Situasi Prevalensi Stunting Di Kab. Grobogan (Tingkat Kabupaten),” no. 2015, 2021.
Y. Nurmalasari, A. Anggunan, and T. W. Febriany, “Hubungan Hubungan Tingkat Pendidikan Ibu Dan Pendapatan Keluarga Dengan Kejadian Stunting Pada Anak Usia 6-59 Bulantingkat Pendidikan Ibu Dan Pendapatan Keluarga Dengan Kejadian Stunting Pada Anak Usia 6-59 Bulan Di Desa Mataram Ilir Kecamatan Seputih Sur,” J. Kebidanan Malahayati, vol. 6, no. 2, pp. 205–211, 2020, doi: 10.33024/jkm.v6i2.2409.
A. A. Shodikin, M. Mutalazimah, M. Muwakhidah, and N. L. Mardiyati, “Tingkat Pendidikan Ibu Dan Pola Asuh Gizi Hubungannya Dengan Kejadian Stunting Pada Balita Usia 24-59 Bulan,” J. Nutr. Coll., vol. 12, no. 1, pp. 33–41, 2023, doi: 10.14710/jnc.v12i1.35322.
E. Kusumawati, S. Rahardjo, and H. P. Sari, “Model Pengendalian Faktor Risiko Stunting pada Anak Bawah Tiga Tahun,” Kesmas Natl. Public Heal. J., vol. 9, no. 3, p. 249, 2015, doi: 10.21109/kesmas.v9i3.572.
J. L. Leroy, J. P. Habicht, T. G. de Cossío, and M. T. Ruel, “Maternal education mitigates the negative effects of higher income on the double burden of child stunting and maternal overweight in rural Mexico,” J. Nutr., vol. 144, no. 5, pp. 765–770, 2014, doi: 10.3945/jn.113.188474.
S. Aryani et al., “Analisis Pola Asuh Dan Pengetahuan Ibu Sebagai Faktor Risiko Terjadinya Stunting,” J. Ris. Kesehat. Poltekkes Depkes Bandung, vol. 15, no. 1, pp. 179–185, 2023, [Online]. Available: https://doi.org/10.34011/juriskesbdg.v15i1.2174
M. D. Puspitasari, C. Murniati, and S. L. Nasution, “Determinan Perencanaan Pendewasaan Usia Perkawinan Pada Remaja 10-19 Tahun Di Indonesia: Analisis Skap Kkbpk Tahun 2019,” J. Kel. Berencana, vol. 6, no. 2, pp. 21–34, 2021, doi: 10.37306/kkb.v6i2.82.
H. Ayuningtyas, S. R. Nadhiroh, Z. S. Milati, and A. L. Fadilah, “Status Ekonomi Keluarga dan Kecukupan Gizi dengan Kejadian Stunting pada Anak Usia 6-24 Bulan di Kota Surabaya,” Media Gizi Indones., vol. 17, no. 1SP, pp. 145–152, Dec. 2022, doi: 10.20473/mgi.v17i1SP.145-152.
J. Fu, Y. Zheng, Y. Gao, and W. Xu, “Dietary Fiber Intake and Gut Microbiota in Human Health,” Microorganisms, vol. 10, no. 12, pp. 1–18, 2022, doi: 10.3390/microorganisms10122507.
E. M. Lee, M. J. Park, H. S. Ahn, and S. M. Lee, “Differences in Dietary Intakes between Normal and Short Stature Korean Children Visiting a Growth Clinic,” Clin. Nutr. Res., vol. 1, no. 1, p. 23, 2012, doi: 10.7762/cnr.2012.1.1.23.
R. D. Semba et al., “Low serum ω-3 and ω-6 polyunsaturated fatty acids and other metabolites are associated with poor linear growth in young children from rural Malawi,” Am. J. Clin. Nutr., vol. 106, no. 6, pp. 1490–1499, Dec. 2017, doi: 10.3945/ajcn.117.164384.
S. Fikawati, A. Syafiq, R. K. Ririyanti, and S. Cahya, “Energy and protein intakes are associated with stunting among preschool children in Central Jakarta , Indonesia : a case-control study,” Mal J Nutr., vol. 27, no. 1, pp. 81–91, 2021, doi: https://doi.org/10.31246/mjn-2020-0074.
I. Supariasa, B. Bakri, and I. Fajar, Penilaian Status Gizi. Jakarta: Buku Kedokteran EGC, 2012.
B. L. Luhovyy, T. Akhavan, and G. H. Anderson, “Whey Proteins in the Regulation of Food Intake and Satiety,” J. Am. Coll. Nutr., vol. 26, no. 6, pp. 704S-712S, Dec. 2007, doi: 10.1080/07315724.2007.10719651.
J. J. Hulmi, C. M. Lockwood, and J. R. Stout, “Effect of protein/essential amino acids and resistance training on skeletal muscle hypertrophy: A case for whey protein,” Nutr. Metab., vol. 7, no. 51, pp. 28–31, 2010, doi: 10.1186/1743-7075-7-51.
S. Patel, “Emerging trends in nutraceutical applications of whey protein and its derivatives,” J. Food Sci. Technol., vol. 52, no. 11, pp. 6847–6858, 2015, doi: 10.1007/s13197-015-1894-0.
K. Arnberg and K. Michaelsen, “Milk and Growth in Children : Effects of Whey and Casein Milk and Growth in Children,” Nestlé Nutr Inst Work. Ser Pediatr Progr., vol. 67, pp. 67–78, 2011, doi: 10.1159/000325576.
H. J. Flint, K. P. Scott, P. Louis, and S. H. Duncan, “The role of the gut microbiota in nutrition and health,” Nat. Rev. Gastroenterol. Hepatol., vol. 9, no. 10, pp. 577–89, 2012, doi: 10.1038/nrgastro.2012.156.
M. Beaumont et al., “Quantity and source of dietary protein influence metabolite production by gut microbiota and rectal mucosa gene expression: A randomized, parallel, double-blind trial in overweight humans,” Am. J. Clin. Nutr., vol. 106, no. 4, pp. 1005–1019, 2017, doi: 10.3945/ajcn.117.158816.
A. Bartlett and M. Kleiner, “Dietary protein and the intestinal microbiota: An understudied relationship,” iScience, vol. 25, no. 11, p. 105313, 2022, doi: 10.1016/j.isci.2022.105313.
K. Oliphant and E. Allen-Vercoe, “Macronutrient metabolism by the human gut microbiome: Major fermentation by-products and their impact on host health,” Microbiome, vol. 7, no. 1, pp. 1–15, 2019, doi: 10.1186/s40168-019-0704-8.
A. Nogal, A. M. Valdes, and C. Menni, “The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health,” Gut Microbes, vol. 13, no. 1, pp. 1–24, 2021, doi: 10.1080/19490976.2021.1897212.
W. S. Wangko, “Aspek Fisiologik Short Chain Fatty Acid (SCFA),” Med. Scope J., vol. 2, no. 1, pp. 26–35, 2020, doi: 10.35790/msj.2.1.2020.31669.
P. Gill, M. van Zelm, J. Muir, and P. Gibson, “Review article : short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders,” Aliment Pharmacol Ther, vol. 00, pp. 1–20, 2018, doi: 10.1111/apt.14689.
S. Anand and S. S. Mande, “Diet , Microbiota and Gut-Lung Connection,” Front. Microbiol, vol. 9, no. 2147, pp. 1–12, 2018, doi: 10.3389/fmicb.2018.02147.
E. Thursby and N. Juge, “Introduction to the human gut microbiota,” Biochem. J., vol. 474, pp. 1823–1836, 2017, doi: 10.1042/BCJ20160510.
W. Feng, H. Ao, and C. Peng, “Gut Microbiota , Short-Chain Fatty Acids , and Herbal Medicines,” vol. 9, no. November, pp. 1–12, 2018, doi: 10.3389/fphar.2018.01354.
M. Aoyama, J. Kotani, and M. Usami, “Butyrate and propionate induced activated or non-activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-41/GPR-43 pathways,” Nutrition, vol. 26, no. 6, pp. 653–661, Jun. 2010, doi: 10.1016/j.nut.2009.07.006.
O. De Jes et al., “Dietary Supplementation with Popped Amaranth Modulates the Gut Microbiota in Low Height-for-Age Children: A Nonrandomized Pilot Trial,” Foods, vol. 12, no. 2760, pp. 1–19, 2023, doi: https://doi.org/10.3390/ foods12142760.
X. Fan et al., “Supplementation of quinoa peptides alleviates colorectal cancer and restores gut microbiota in AOM/DSS-treated mice,” Food Chem., vol. 408, no. 2023, p. 135196, 2023, doi: 10.1016/j.foodchem.2022.135196.